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Summary

Plates can have more than one buckled solution for a fixed set of boundary conditions. The theory

for the identification and the computation of multiple solutions in buckled plates is examined in this

paper. The theory is used to predict modal interaction, which is also called change in buckle pattern
or secondary buckling, in _,xperiments on certain plates with multiple theoretical solutions. A set of
coordinate functions for G_tlerkin's method are defined so that the Von Karman plate equations are

reduced to a coupled set of cubic equations in generalized coordinates that are uncoupled in the linear

terms. An iterative procec ure for solving modal interaction problems is suggested in the paper based
on this cubic form.

Introduction

Modal interaction in pl_ttes is a nonlinear boundary-wdue problem. The plates considered here are

loaded by edge loads in th_ plane of tile undeformed plate. The edge loads are defined so that they

appear in the theory as a linear boundary condition. The nonlinear part of the problem is the set of

nonlinear partial differenti_d equations of Von Karman plate theory. Modal interaction is concerned

with identifying and computing all the solutions of the plate equations for a fixed set of boundary
conditions.

The theory for modal interaction is examined in this paper. The theory shows why problems

with multiple postbucklinl,; solutions require more care in computations than problems with unique

postbuckling solutions and provides insight into a proposed algorithm for handling such problems.

The theory for unique postbuckling solutions is often presented in the context of perturbation theory

(ref. 1). The assumptions replied in expansions in a single perturbation parameter do not necessarily

hold true for modal interm:tion problems. Continuation methods that treat the load parameter as a

dependent variable have l:_,en implemented in finite-element codes (refs. 2 to 4). The algorithms in

these codes assume contiIuity of the solutions that may lead to poor convergence properties when

applied to modal interacti_n problems.

For discrete mechanical systems, the theory (refs. 5 and 6) is general enough to treat modal

interaction problems. In t,he current paper, a discrete system for the plate problem is derived in

generalized coordinates. N_,wton's method is the connection between the nonlinear partial differential

equations of plate theory and the discrete theory. The analysis in the paper starts with the linear
form of Newton's metho¢i This form of Newton's mq_thod has convergence problems for modal

interaction problems. Itow_ver, the source of the poor convergence in the linear method is clear, and a
modification to the linear :algorithm is printed in this paper, so that rapid convergence is maintained.

The modification is an extension of previous work on postbuckling analysis using Newton's method

(ref. 7) for problems with ,solated bifurcation points or limit points.

Newton's method is started by reducing the nonlinear problem to a sequence of linear boundary-

value problems. Two difficulties arise in the application of Newton's method. First, the linear boundary-

value problems do not have closed-form solutions; therefore, the computation requires some kind of

an approximate solution. The second difficulty is the lack of convergence of the sequence of linear

problems near bifurcation points, where the different nonlinear solutions intersect. Because the linear
boundary-value problems _Kmst be solved by approximate methods, one approach is to discretize the

nonlinear problem from the, beginning and then apply Newton's method to the resulting set of nonlinear

algebraic equations.

The completely algebraic approach is not followed here because of the second difficulty of ensuring

convergence of Newton's method. Convergence is obt._ined here by converting the linear partial

differential equations to a Sturm-Liouville problem with orthogonal eigenfunctions. The nonlinear

problem is then discretized by a Galerkin solution with the eigenfunctions as coordinate functions.

The resulting set of nonlin_,_ar algebraic equations with uaknown generalized coordinates is uncoupled
in the linear terms. The solution procedure can be summarized as a Galerkin solution of the nonlinear

boundary-value problem fi,r the plate. However, the ch_fice of coordinate functions is not arbitrary;
the coordinate functions are determined by the problem itself. The second, more subtle, difficulty

of convergence is overcom_ directly before addressing the first difficulty, that of computing accurate
approximate solutions for iinear boundary-value problem_.



Thefinal resultin this paperis a setof nonlinearalgebraicequationsin generalizedcoordinates.
Theequationsarein theformpostulatedby ThompsonandHunt (ref.6) in their studiesof stability
theory. Thecoefficientsin the algebraicequationsaredefinedexplicitlyfor the plateproblem.The
processof definingthe coefficientssuggestsalgorithmsfor numericalsolutionsof the plateproblem.
Newton'smethodappliedto thecontinuousformulationof VonKarmanplatetheoryprovidesadirect
connectionwith the theoryfor discreteapproximations.

Symbols

All, A12, A22, A66

ai

D

DH, D12, D22, D66

(El, E2, E3)

ex _ ey _ exy

<f,g>

i,j,n

Lll(U), L12(u)

LI2(V), L22(v)

L33(w)

Mx, My, Mzy

NI (w, w), N2(w, w)

N3 ( , ,N z, , )

qi

tt, U

UL, VL

(UO,VO,WO)

w

Ui,¢,)

A subscript
variable.

stretching stiffness terms, force per unit length

coefficient in infinite series for w0

discriminant of cubic equation in qi

bending stiffness terms, force times length

residual error in plate equations for current approximation

membrane strains

integral of product of functions f and g over area of plate

unit vectors

linear terms in partial derivatives of u

linear terms in partial derivatives of v

linear terms in partial derivatives of w

moment stress resultants, force

membrane stress resultants, force per unit length

bilinear terms in partial derivatives of w

bilinear terms in stress resultants and partial derivatives of w

generalized coordinate in Galerkin solution of plate equations

in-plane components of plate displacements

solution of linear in-plane equilibrium equation

current approximation for a solution of the plate equations

transverse plate displacement

correction to current approximation of the plate equations

load parameter that multiplies displacements on plate boundary

ith eigenvalue of Sturm-Liouville problem

ith eigensolution of Sturm-Liouville problem

following a comma indicates partial differentiation with respect to the subscripted

Nonlinear Equations for Plate Problem

The nonlinear theory (ref. 8) is summarized here first, and the linear form of Newton's method is

then applied to the three equilibrium equations written in terms of the displacement components u,

v, and w. The linear problem is then transformed into a Sturm-Liouville problem that shows why the

linear form of Newton's method can fail to converge for modal interaction problems. The next section

of the paper contains the modification of the linear form of Newton's method using the eigenfunctions
of the Sturm-Liouville problem.



Thenonlinearplateequationsfor a speciallyorthotropic plate are summarized as follows:

1. Constitutive relation:J:

2. Strain-displacement l(dations:

3. Equilibrium equatior_,,_:

Nz,x + N_,_,v = 0

Nxy,z + N_,!I = 0

Nx = Allex + A12ey

Ny = A12ex + A22,;y

Nxy = A66exy

M;x = DllW,xx + D12w,yy

My = D12w,xx + D22w,yy

Mzy = D66w,xy

ex = u,x + (ll2)w!x

ev = v,y + (l/2)w!_

exy = U,y + V,x + U,xW,y

Mz,zx + 2M_:v,xy + Mv,yv = (Nxw,x + Nzvw,y),z + (Nvw,v + Nxyw,z),v

4. Boundary conditions

(la)

(lb)

(lc)

(2a)

(2b)

(2c)

(3a)

(35)

(3c)

(4a)

(4b)

(4c)

The plate problems considered here have boundary arcs where u and v are prescribed. The plate

may or may not have additional arcs that are free of membrane stresses. The boundary conditions are

indicated schematically by the loaded 5oundary C1 and the unloaded boundary C2 in figure 1. In the

figure, the displacements ol_ the boundary C1 are of the h,rm

U = AUL (on el)

v = AVL (on C1)

(5a)

(55)

where u L and v L are functions of arc length on the boundary, and the load factor A is a scalar multiplier.

On the other hand, the str(._s resultants vanish on the (72 boundary defined as follows:

Nn = Nns = 0 (on C2) (5c)

The boundary conditions oil the transverse displacement w are homogeneous and correspond to simply

supported or clamped conditions in linear-plate bending theory and are of the following form:

w=0onC; W,n=O; orw,nn=0onC (5d)

The boundary condition_ on w could be more general, but the method of analysis is illustrated with

less complexity by the choice made here. The load parameter (A) is also introduced in the in-plane

boundary conditions to simplify the analysis.

Substituting the strain-displacement relations (eqs. (3)) into the constitutive relations (eqs. (1)) and

the resulting equations into the equilibrium equations (eqs. (4)) allows the equilibrium equations to be
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writtenasnonlinearpartialdifferentialequationsin termsof thedisplacementcomponentsu, v, and

w. The equations, written here in operator notation for brevity, are

L11(u) + L12(v) + Nl(w,w) = 0

L12(u) + L22(v) + N2(w, w) = 0

L33(w) - N3(Nx, Ny, Nxy, _) = 0

The linear operators, labeled Lij , are

Lll(U ) -- AllU,x x + A66u,yy

L12(.f) = (A,2 + A66)f,_

L22(v ) -- A22v,yy + A66v,xx

L33(w) = DllW,xxxx + (2D12 + D66)W,xxyy + D22w,yyyy

The nonlinear operators are

Nl(f, g) = Allf, xg,xx + (A12 + A66)f, yg,xv + A66f, xg,yy

N2(f, g) = A22f, yg,yy + (A12 + A66)f, zg,zv + A66f, yg,xz

Y3(gx, Y_, g_, _) = (gxw,x + gxv_y),x + (Y_w,y+ g_v,,,_),v

(6a)

(6b)

(6c)

(7a)

(75)

(7c)

(Td)

(8a)

(8b)

(8c)

Linear Form of Newton's Method for Plate Problem

Linear Form of Newton's Method for Displacement Formulation

Newton's method starts with an approximate solution (uo, vo, wo) for the nonlinear system (eqs. (6))

plus the boundary conditions. The zeroth approximation is corrected by letting

u=uo+Su, v=vo+_v, w=wo+Sw (9)

The linear form of Newton's method seeks the correction (Su, 5v, 5w) by substituting equations (9) into

the nonlinear equations (6) and dropping nonlinear terms in the corrections to arrive at the following
linear variational equations:

Lll(_iu) + L12(_v) + Nl(SW, wo) + N1 (wo, 5w) -- -E 1 (10a)

L12(_u) + L22($v) + N2(Sw, wo) + N2(w0, _w) -- -E2 (10b)

L33(6w ) - N3 (6 Nx , 6Ny, 6gxy, wo ) - N3 ( Nxo, Nyo, gzyo, 6w ) = -E 3 (10c)

where the residual-error terms are known functions of the zeroth approximation; that is,

El = Lll(UO) + Ll2(VO) + Nl(wo, wo) (lla)

E2 = L12(u0) + L22(v0) + N2(w0, w0) (llb)

E3 = L33(w0) - N3(Nxo, NyO, NzvO, wo) (llc)

NxO -- All [u0,x + (1/2)W2,x] + A12 [vo,y + (l/2)w2,y] (12)
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withsimilarexpressionsfoi IVy0 and Nzyo in terms of the zeroth approximation for u, v, and w.
corrections to the membraI ,, stress resultants are linear in 5u, 5v, and 5w. For example,

sNxy = A66 (SU,y + 5V,x + W,xOSW,y + 5W,xWO,y)

The

(13)

Linear Sturm-Liouville Theory

The linear variational e, tuations of Newton's method (eqs. (10)) have variable coefficients and, in

general, cannot be solved in closed form. However, the linear problem can be reduced to a Sturm-
Liouville problem, which can be solved by approximate methods. The reduction to a Sturm-Liouville

problem is achieved by deft ring the zeroth approximation for the in-plane displacements as the sum of

two pairs of functions as fo lows:

uo = AUL -4-Uw,) (14a)

vo = AVL + VwO (14b)

The sums are defined by requiring that u L and v L satisfy the linear boundary-value problem,

Lll(UL) + L12(VL) = 0

L12(UL) .4- L22(VL) =- 0

(15a)

(15b)

plus nonhomogeneous boun,iary conditions. The functions .XuL and Av L that satisfy equations (15) are

also required to satisfy the boundary conditions on u and v in equations (5).
The functions UwO and vw0 in the zeroth approximation for u and v (eqs. (14)) are then defined as

the solution of the boundal v-value problem as follows:

Lll (Uwo) + L12(VwO) -4-Nl(wO, wo) = 0

L12(UwO) + L22(VwO) + N2(uo, w0) = 0

(16a)

(16b)

with the homogeneous bou ,dary conditions

UwO = 0 (on C1) (17a)

VwO = 0 (on C1) (17b)

Finally, the definition of the zeroth approximation for u and v as sums of solutions of two boundary-value

problems is completed by partitioning the zeroth approximation for the membrane stress resultants

(eq. (12) and appendix) as fbllows:

NxO =/kgxL "4"NxwO

Nuo = ANuL + N_,wO

Nxy 0 =/kNxy L + NxywO

(18a)

(18b)

(18c)

where the functions multip ied by the load parameter X and with the subscript L satisfy the boundary

conditions on (72 (eq. (5c)) The functions with the subscript w0 also satisfy the conditions on C2 and

are completely independent of the value of X.

Splitting the zeroth approximation for u and v reduces the linear variational equations (eqs. (10)) to
a boundary-value problem with homogeneous boundary coaditions and with the load factor A appearing

as a parameter in the following partial differential equations:

Lll(_fu) + L12(_v) + Jl(6w, w0) + Nl(wo,_fw) = 0 (19a)
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LI2(6u) + L22(6v) + N2(6w, wo) + N_(wo,6w) = 0 (19b)

L33(_w) - N3(6N_,6Ny,6Nxu, wo)- N3(N_wo,Ny_o, Nxu,oo,6w)- )_N3(NxL,N_L,N_uL,6W) = -E3 (19c)

Eigenfunctions of Sturm-Liouville Problem

The solution for the linear system (eqs. (19)) can be formally written as an expansion in eigenfunc-
tions _i, r/i, and ¢i of the Sturm-Liouville system:

Lll(_i) + L12(rh) + Nl(¢i, wo) + Nl(wo, ¢i) = 0

L12(_i) + L22(r/i) + N2(¢i, wo) + N2(wo, ¢i) = 0

L3(¢i) - N3( nxwi, nywi, nxywi, wo ) - Na( Nzwo, Nywo, NzywO, ¢i)

-- .XiNa(NxL, Ny L, Nxy L, ¢i) = 0 (i = 1, 2, 3, ..., oc)

(20a)

(205)

(20c)

where the functions nxwi, nywi, and nzywi are defined in equations (A7a) to (A7c). The notation for

equations (20) is somewhat cumbersome, but the final result is simple. The eigenfunctions that are

solutions of equations (20) obey the following orthogonality relation that is derived in the appendix:

(Ai - )tj) f [¢j, N 3 (NxL , NyL, NxyL, ¢i)] dA = 0 (21)

The orthogonality relation suggests seeking the solution of the linear variational equations as a modal
expansion as follows:

6U = Uwl = Z qi_i (22a)
i=1

cx)

tSV = Vwl = Z qi_li (22b)
i=1

6w = Z qi¢i (22c)
i=1

oo

6Nz = Nzwl = Z qinxwi (23a)
i=1

OC

6Ny = Nywl = Z qiny wi (23b)
i=1

IX)

6Nzy = Nzywl = Z qinxy wi (23c)
i=1

The generalized coordinates qi are unknown. They are determined by Galerkin's method. The assumed

solution satisfies equations (19a) and (19b) term by term. Equation (19c) is satisfied in the least-squares

sense by multiplying the equation by each eigenfunction Cj in turn, integrating over the area of the
plate, and equating the results from each side of the equation. Because of the orthogonality condition
(eq. (21)), the resulting equations take the form

< -Ea,¢j >

qJ- (A-Aj) (j = 1, 2, 3, ..., oc) (24)
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where< f, g > represents t he integral over the area of th(_ product of the functions / and g. That is,

< f,g > =f(fg) dA
(25)

It is also assumed in equat ons (24) that the eigenfunctions have been normalized so that

< ¢i, N3(Nxl,, N_L, gx_L, ¢i) > =-1 (i = 1, 2, 3, ..., oc) (26)

Equation (24) is a canoni('al form for the edge-loaded plate problem. The solution of the linear

variational equations of N,,wton's method is completed by substituting the generalized coordinates

qi from equations (24) into equations (22) to determine the correction (Su, _iv, _fw). If the correction is

small compared with the z,roth approximation (uo,vo,wo), then an iterative solution of the nonlinear

plate equations based on the linear form of Newton's method can be expected to converge. The linear

iterative sequence is contiI_(md by going back to equations (9), letting Wl = w0 + tfw, and repeating

the analysis through equations (24) with wl as the zeroth approximation w0 for w during the second

iteration cycle.
For the iterative procedlLre in the linear form of Newton's method to converge, the corrections from

successive iteration cycles must approach zero as the iteration continues. A quantitative measure of

the correction _fw from any iteration cycle is the magnitudes of the generalized coordinates qj, which

are modal amplitudes, as determined by equations (24). The current solution for w can be expanded

in a least-squares sense as :t series in the eigenfunctions of the Sturm-Liouville problem

0_3

w= Z (2r)
i=1

A measure of convergence is the set of ratios of the absolute values of qi to the largest coefficient
in absolute value in the series for w. Each qi in turn depends on the numerators and denominators

in equations (24). The de:_ominators are a function of the load parameter _ and the eigenvalues )_i.

Obviously, a large value for the corresponding qi is the re.-.ult of dividing by a denominator that is zero
or small in absolute value, unless the numerator is also small.

The numerators are als_ linear in _ and can be written as

<E3,¢i> = E3i - ai'_ (28)

The coefficient ai in equation (28) is the same as the coefficient of ¢i in the expansion for w = w0 in

equation (27). (See appemtix.) Therefore, equations (24) can be rewritten as

qi =: (E3i- aiA)/(_- Ai) (i = 1, 2, 3, ..., oc) (29)

The load parameter can t,c prescribed to make one of _,he generalized coordinates, for example ql,

vanish if the correspondint_ coefficient a I is not zero, that is,

X = E3I/al (30)

If X - )_I is also zero, q! c_m still be set to zero arbitrarily during any given iteration cycle. Then, if
is not too close to the remaining )_i, the iteration using the linear form of Newton's method can be

continued. If one of the equations is indeterminate, for example,

qv = (E3k -- akX)/(X - Ak)= (0 + 0_)/0 (i # k) (31)

the iteration can be continued after setting qk equal to zero. However, the indeterminate form is an
indication of modal interat'tion with other solutions to the nonlinear problem for which qk is not zero.

A bifurcation point or limit point, where a second nonlin,_ar solution intersects the current solution, is

7



a limiting caseof the indeterminateformin whichtheexpansionis aboutanexactsolution,sothat
theresidualerrorfunctionE 3 = 0 for A = _ and A = Ak.

In cases where some of the qi determined by equations (29) are not small or are indeterminate,

the linear form of Newton's method must be modified either to speed convergence of the current
approximation or to obtain convergence for solutions that intersect the current solution at bifurcation

points.

Modified Newton Method for Modal Interaction Problems

The analysis of the preceding section shows that the linear form of Newton's method for buckled

plates may diverge or miss solutions when the load parameter _ is near one or more eigenvalues hi of
the Sturm-Liouville problem associated with the linear variational equations. A modification of the

iteration that has better convergence properties is derived in this section.

The linear variational equations (eqs. (10)) were derived by dropping nonlinear terms in the

correction 5w. The exact nonlinear equations that result from substituting equations (9) into the
nonlinear boundary-value problem (eqs. (6)) are

Lll (Su) + L12(_v) + NI (Sw, w0) + Nl(w0, 6w) = -El - Nl(SW, _w) (32a)

L12(Su) + L22(Sv) + N2(_w, wo) + N2(w0,,Sw) = -E2 - N2(Sw, 6w) (32b)

L33(_w) - N3(,SN_,_N_,6N_,wo)- N3(Nxo, N_o,Nx_o,_w) = -E3- N3(_Nx,_N_,6Nx_,,_w) (32c)

The nonlinear terms in 5w are placed on the right-hand sides of equations (32) to indicate that an
iteration sequence can be devised in which the nonlinear terms in 5w are based on some current

approximation. The form of that iteration sequence is suggested by examining the exact nonlinear
equations in the generalized coordinates qi.

Nonlinear Problem in Generalized Coordinates

In equations (14), the initial approximation for the in-plane displacements (uo,vo) was partitioned

into two sets of functions. This partitioning remains the same for the complete nonlinear problem. The
corrections (Su, 5v) are further partitioned for the nonlinear problem as follows:

5u = Uwl + Uw2 (33a)

5v = Vwl + Vw2 (33b)

where (Uwl, vwl) is the first approximation for (Su, 5v) defined by equations (22). The additional terms

Uw2 and Vw2 in 5u and 5v are defined by quadratic terms in 5w. Formally, they satisfy the differential
equations

Lll(Uw2) + L12(Vw2) + Nl(SW, 5w) = 0

L12(Uw2) + L22(vw2) + N2(_w, 5w) = 0

(34a)

(34b)

The nonlinear operators Nl(SW, SW) and N2(6w, Sw) are quadratic in 5w. The series solution for _w

in equation (22c) is unchanged in the complete nonlinear formulation, and the generalized coordinates

qi in the series for 5w remain to be determined. Equations (34) are solved in terms of the generalized
coordinates to obtain

oo oo

j=l k=l
(35a)

oC O(3

j=l k=l
(35b)

8



where the functions _jk anti _?jk are defined as solutions of the following equations:

Lll(_jk) + L120?jk)+ NI(bj, Ck) = 0 (35c)

L12(_jk) + L22(_jk) + N2(¢j, Ck) = 0 (35d)

The complete corrections t, the stress resultants in terms of the generalized coordinates are obtained

by adding quadratic terms to the linear terms already detined in equations (23). That is,

(3O O(3 OG

bNx = Nxwl + Nxw2 = Z qinxwi -_-_-, Z qJqknxwj k
i=1 j=l k=l

(36a)

¢3C 0(_ ¢:X3

(_Ny = Nywl + Nyw2 = Z qinywi -k Z Z qJqknywj k
i=1 j=lk=l

(36b)

OO O(3 0(2

MVzy = Nxuwl + Nxyw2 = Z qinxy '''i + Z Z qJqknzywj k
i=1 j=l k=l

(36c)

The terms in the double sl_mmations are defined explicitly in the appendix.

The final step is to substitute the partitioned form ['or the stress resultants into the transverse

equilibrium equation (eq. (19c)) and to solve the resulting equation by Galerkin's method. The

equilibrium equation is

L33(_w) -

+

+

N3( Nxwl, Nywl, l"Vxywl, wo)

U3(N.wo, Nu ,o,-X. wo,

. Na( N L, N L, h: ur, 6w)

E3 + N3(N.wl, N.y a,

Ua(N w2, )

N3( Nuw2,N. ,w2, 6w) (37)

The left-hand side of equal ion (37) is identical to equation (19c). The quadratic and cubic terms in the

generalized coordinates have been added to the right-hand side of the equation. The formal Galerkin

solution of equation (37) i:; an infinite set of cubic equations in the qi as follows:

()_ - )_i)qi ::: Col + C2ijkqjqk + C3ijkmqjqt qm (i = 1, 2, 3, ..., oc) (38)

In equations (38), repeated subscripts j, k, and m are summed. The integrals that define the coefficients

in equations (38) are listed in the appendix. Equations (38) are the final results of reducing the nonlinear

plate problem to a nonlinear algebraic problem in the generalized coordinates qi-
Equations (38) are similar to the equations in generalized coordinates postulated by Thompson

and Hunt (ref. 6) for colservative systems. The analysis in the body of this paper and in the

appendix gives a precise [brmulation for determining the coefficients in the cubic equations. The

displacement formulation of the Von Karman equations and the choice of boundary conditions allow
exact determination of the role of the load parameter A. '['he equations for the plate problem are cubic

in the generalized coordinates and linear in the load parameter )_.
Only the real roots of the cubic equations correspond to real solutions of the plate equations. The

number of real roots is affected by the algebraic signs of the coefficients. Therefore, in the theoretical

analysis, much qualitativ(' information is available when it is known how the coefficients vary with

the load parameter A. Tl_ equations are uncoupled in the linear terms for the values of qi with the

coefficients ()_-)h). The sign of each coefficient of a linear term depends on whether A exceeds Ai, which
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in turn isa functionof w0. The coefficients Cij k and Cijkm are independent of the load parameter A
for the edge-loaded plate. The residual-error terms Coi are exactly the same terms that appeared in
the linear form of Newton's method as follows:

Col = < E3,¢i. > = Eai + aiA (i = 1, 2, 3, ..., oc) (39)

The form of the complete set of cubic equations in generalized coordinates suggests a modification

of the linear form of Newton's method that will improve convergence.

Modification of Linear Form in Generalized Coordinates

The linear form of Newton's method corresponds to dropping quadratic and cubic terms in

equations (38) to obtain equations (22). This procedure breaks down when the load factor A is nearly

equal to one of the eigenvalues (e.g., the Ith eigenvalue). A modification of the linear form is to retain

only nonlinear terms in the modal amplitude qI during a given iteration cycle. The modified form of
equations (38) is then

(A - Ai)qi = (Eai + aiA) + C2illq 2 + CaillIq 3 (i = 1, 2, 3, ..., oc) (40a)

The Ith equation of this modified set is the cubic equation

(A - Ai)ql = (E31 + alA ) + C2iiIq 2 + C3ilIiq 3 (40b)

If the coefficient C3iii is not zero, the cubic equation has at least one real solution for qI. In some
cases, there can be three real roots. The discriminant of the cubic equation is

D=c 3 + (3b2/4)c 2 - (3bd/2)c- d(b3+d/4) (41)

where

c = (A - AI)/(3C31II), b = C2III/(3C3IIII) , and d = (E3I - alA)/C3III

When the discriminant D is positive, the cubic equation has three real roots. The real roots qI of
the cubic equation in qI are then substituted in the remaining equations (40), which are linear in the

remaining qi. The solution of equations (40) for any root of the cubic equation completes an iteration
cycle in the modified form of Newton's method.

This solution of equations (40) can be the basis of a second iteration cycle to compute a solution

of the complete set of nonlinear algebraic equations (eqs. (38)). The solution of equations (38) can be
assumed as

qi = q_l) + tSqi (i = 1, 2, 3, ..., oc) (42)

where q_l) denotes the qi from a solution of equations (40) and the values of 6qi are corrections to be

determined. Substitution of equations (42) into equations (38) results in a new set of coupled cubic

equations in the unknown _qi. An approximate solution of this set is obtained by truncating the new
set of equations; this truncation is accomplished by retaining only nonlinear terms in 5qi to obtain an
updated set of equations (40); these equations are solved to complete the second modified iteration

cycle. The modified iteration can be continued until an accurate solution or solutions are obtained

for qi in equations (38). When the absolute values of q!l) are all small, the iteration can be expected:
to converge; this convergence is expected, since the residual-error vector for any iteration cycle after

the first is equal to the summation of the quadratic and cubic terms dropped in going from the full
nonlinear set of equations (eqs. (38)) to the truncated set (eqs. (40)).

This direct iterative solution of equations (38) is straightforward in theory but has disadvantages
for actual computations. The large number of coefficients of quadratic and cubic terms axe defined

by integrals that must be evaluated numerically or in closed form. An alternative approach, which

is equivalent to summing the quadratic and cubic terms into an updated error vector, is to update

the zeroth approximation for w0 after solving equations (40) for the first time. The current correction

5w is computed from equation (22c). Examining the details of updating w0 is beyond the scope
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of the presentpaper. However,if the numericalanalysi_is alsoconnectedwith a Galerkinsolution
for the lineareigenvaluept_oblem,updatingw 0 becomes a part of an iterative procedure whose rapid

convergence makes it a pra_:tical numerical algorithm. In this procedure, it is also necessary to compute

only a few of the eigenvalucs hi and the corresponding eigenfunctions ¢i. An equivalence transformation

can be used in the humeri( al analysis (ref. 9). The equivalence transformation is derived by going back

to equations (22) and letting the correction _w be a seri_'s of admissible functions gi, of which only a

small number are eigenfun_:tions ¢i.

Modification for Modal Interaction

The modified form of Newton's method can be exten, ted to the cases where two eigenvalues (e.g.,

)_1 and )_2) are close together. In those cases, equations (38) are truncated during an iteration cycle to
contain only nonlinear terms in ql and q2. The pair of equations for i = 1 and i = 2 are simultaneous

cubic equations. Real solul ions for ql and q2 are then sub:_tituted in the remaining linearized equations

for the rest of the qi.

Conclusions

Newton's method has t,een applied to the nonlinear postbuckling problem for plates. The method

reduces the nonlinear partial differential equations of plate theory to a set of simultaneous cubic

equations in generalized c(,ordinates. The cubic equations are uncoupled in the linear terms. The

uncoupling is achieved by solving the linear variational equations of Newton's method as a Sturm-

Liouville problem. The eigenfunctions of the Sturm-Lk, uville problem are then used in a Galerkin

solution of the full nonlinear plate equations to derive the' set of cubic equations.

By specifying boundary conditions on displacements, instead of on the in-plane stress resultants,

the coefficients in the cubtq: equations are linear in the ioad parameter, which is a multiplier of the
boundary conditions. The analysis also shows that coefficients of quadratic and cubic terms in the

generalized coordinates of the cubic equations are indepeudent of the load parameter.

The special form of the _:ubic equations suggests a method of solution for modal interaction problems.

The method is a modification of the linear form of Newton's method. The solutions of the plate

equations derived by the m(_thod can be either approximate or very accurate, depending on the number
of generalized coordinates ,_etained in the solution.

NASA Langley Research Center
Hampton, VA 23665-5225
July 27, 1989
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Appendix

Definitions of Sums of Functions and Integrals That Appear in the Analysis

Green's Theorem and Properties of Bilinear Operators

The analysis in the body of the paper is an examination of a formal Galerkin solution for the

Von Karman plate equations. The integrals in the Galerkin solution make repeated use of Green's

theorem for integration in a plane. The form of the theorem used here is

/Az(r,x+S,y) dA=/cZ(ri+sj) . ndS-/A (rz,z+szy ) dA (A1)

The area integrals are over the area of the plate indicated schematically in figure 1, and the line integral

is over the boundary of the plate.

The plate equations are nonlinear and contain a number of bilinear operators. The analysis in the

paper uses the properties of bilinear operators of the general form N(f, g). The operators Nl(w, w) and

N2(w, w), defined in equations (6), are bilinear operators; each is a sum of products of linear operators.
The operator N3(Nx, Nxy, Nx, w) is a sum of bilinear operators. The property of the bilinear operators

that is used repeatedly here is that if a, b, c, and d are constants, and if

f = afl + bf2 andg=cgl+dg2

then

N(f, g) = acN(fl, gl)+ adN(fl, g2) + bcN(f2, gl)+ bdN(f2, g2) (A2)

For example,

Nl(W,W)-- Nl(w0 + 5w, wo + 5w)

Nl(w, w) = NI(W0, w0) + Nl(w0, 5w) + Nl(SW, wo) + Nl(SW, 5w)

and

Nl(w0, 6w ) = N1

Nl(Sw, 5w) = N1

wo, qi¢i -- qiNl(wO,¢i)

"= i=l

qi¢i, qjCj ---- qiqjNl(¢i , CJ)
i=1 i=l j=l

A bilinear operator on a single sum results in a quadratic form with double subscripts. The double
sums in the quadratic forms for the bilinear operators on w = w0 + 5w are the main factors in defining
the solutions for u and v in the analysis of the plate equations leading to the cubic equations in the

generalized coordinates qi. Since the operators on u and v are linear in the first two equations of

equations (6) and the boundary conditions on u and v are also linear, the linear partial differential

equations whose solutions determine u and v can be solved by solving equations (15), (16), (20),

and (35) separately and superposing the results. The superposition on u and v is summarized in the

following section.

Definitions of Sums of Functions

The in-plane displacements are defined in the form

u = .,_uL -t- UwO + Uwl -I- Uw2

v = ._vL -t- VwO + Vwl + Vw2

(A3a)

(i3b)

12



Themembranestrains.tresummedas

ex = AexL + exwo + exwl + exw2

ey = /_ey L + eywo + eywl + eyw2

exy = )U'_xyL + exywO -F ex_wl + exyw2

where

(A4a)

(A4b)

(A4c)

exL = UL, x

ey L = VL,y

exy L = UL,y + VL,x

exwo= u O,x+ (1/2)W ,x

exywO = UwO,y + VwO,x + WO,xWO,y

exw 1 = Uwl,x + WO,xSW,x

exywl ----Uwl,y + Vwl,x + wo, x _W,y + _W,xWO,y

Individual strain terms not listed can t)e derived by permutations of u and v and x and y in the terms
listed above.

Membrane stresses follow the same notation pattern as the strains

N_ = ,_N_L + Nxwo + Nx,_t + Nx,02

Ny = )_Ny L + NywO + Nyw, + Nyw2

Nzy =/XNxy L + NzywO + N_.yu,1 + Nvw2

where

NxL = Allexl, + A12ey L, Nxw k = Allexw k .t- A12eywk

NyL = AlleyL + A12eyL, Nywk = A12exwk + A22eywk

gxy L = A66ex,jL, and gxywk = A66exywk

(A5a)

(A5b)

(A5c)

(k=O, 1, or2)

(k=0, 1, or 2)

(k=0, 1, or2)

Boundary Conditions

The solution (UL, VL) sat isfies the linear partial differential equations (eqs. (15)) plus the boundary

conditions (eqs. (5)). The fimctions NxL, N_L, and Nzvl, satisfy the stress-free boundary conditions
on the (72 arcs.

Since the solution (UL, _L) satisfies the nonhomogeneous boundary conditions, the solutions that

are added must vanish on tile boundary. They are defined here to vanish term by term as follows:

Uwk = 0 on arc C1 (k = 0, 1, or 2) (A6a)

Vwk = 0 on arc C1 (k = 0, 1, or 2) (A6b)

The stress resultants with the subscripts wk satisfy the stress-free boundary conditions on arc C2. These
boundary conditions appear in the derivation of the orth()gonality conditions for the Sturm-Liouville

problem that is derived from the linear variational equations of Newton's method (eqs. (10)).

13



Orthogonality Relation for the Sturm-Liouville Problem

The orthogonality relation for the Sturm-Liouville problem (eq. (21)) follows from the boundary
conditions, the definition of terms in the subscript wl, and Green's theorem. In equations (22), the

functions Uwl and Vwl are written as sums of functions that satisfy the linear partial differential

equations (20). From the definition of the strains in equations (A4) and the stress resultants in

equations (A5), the terms in the summation in equations (23) are also defined as follows:

nxwi = All(_i,x + WO,x¢i,x) + A12(_li,y + WO,y¢i,y)

nuwi = A12(_i,x + wo,x¢i,x) + A22(_i,y + WO,y¢i,y)

nxywi = A66(_i,_ + 7?i,x + WO,x¢i,y + ¢i,xwo,_)

(A7a)

(A7b)

(A7c)

Equations (20a) and (20b) have the alternate form

nxwi, x + nxywi,y = 0

nxywi,x + nywi,y : 0

(i= 1, 2, 3, ..., co)

(i= 1, 2, 3, ..., co)

(A8a)

(A8b)

The orthogonality relation is derived by applying Green's theorem to the above equations and to

equation (20c). For equations (A8), the result is

/A _j(nxwi'x + nxywi'y) dA = fC _J(nxwii + nxywiJ) " nds- /A (nxwi_j'x + nxywi_j'Y) dA =O (A9a)

/A 7?j(nxywi,x + nywi,y) dA =/C _?j(nxywii + nywiJ) . nds- /A(nxywi_?j,z + n,wi_?j,y) dA=O (A9b)

The boundary conditions on the solutions of equations (20) are that each eigenfunction _i and 7/i must

vanish on the boundary C1 and that the dot products in the line integrals in equations (A9) vanish on

the boundary 6"2. Therefore, in the notation of equation (25) for integrals of products,

A(nxwi_j,x + nxywi(j,y ) dA = < nzwi, _j,x > + < nxywi, _j,y > = 0 (A10a)

< nxywi, _j,x 2> + < nxwi, _j,y > = 0 (i = 1, 2, 3, ..., co; j = 1, 2, 3, ..., co) (A10b)

It is assumed that each of the functions ¢i in the solutions of equations (20) satisfies the same

boundary conditions as w. Green's theorem applied to any Na operator in equation (20c) then has the

general form

< Cj, g3(gx, Yy, Nxy, w) > = - < (Nxw,x + Nxyw,y), Cj,x > - < (Nyw,y + gxyw,x), Cj,y >

where

Na(Y_, gy, gx_, w) = (N.w,x + N_y_u),_ + (N_w,y + N_),y

Specifically,

< Cj, Na(nxwi, nywi, nx_,i, wo) > = - < (nxwiwo,, + n_uwiWO,_), Cj,_ > - < (n_wiwo,_ + nx_wiWo,x), Cj,y > (A1 la)

< Cj,Na(Nzwo, Nywo, NxywO,_i) > = - < (Nxwo¢i.x + Nxyw0¢i,y), _bj,z > - < (Nywo¢i,y + Nxywo¢i,x),¢j,y > (Allb)

< Cj, Na(N_L, N_L, N_L, ¢i) > = - < (N,L¢i,, + N_L_i,_), Cj,z > -- < (N_L¢,,_ + N_L¢i,_), Cj,_ > (A1 lc)

The orthogonality relation (eq. (21)) is proven by multiplying the jth equation of equations (20c)

by ¢i, integrating over the area of the plate, and subtracting the result from the integral of the ith
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equationmultipliedbyCj. Consideringoneoperatorat atimein equations(20c),it canbeshownfirst
that

< Cj,L33(¢i)> - < ¢i,L_3(¢j) > = 0 (A12a)

Next,by inspectionof theright-handsidesof the last tw.)of equations(All), it isapparentthat

< Cj, N3(Nxwo, V_wo,gx_o, ¢_) > - < ¢i,N3(gx.,o, Nywo, Nx_o,¢_) = 0 (A12b)

< Cj,N3 NxL, NyL,,'_xyL, dPi) > = < ¢,,N3(NxL, NyL,NxyL, dpj) > (A12c)

If equations (A10) are -:ubtracted fl'om the right-han, I side of equation (Alla) and the terms are
rearranged, the result is

< ¢j, N3(nxwi, nywi, n:l!lwi, wo) > = - < nxwi, (_j,x + WO,xCj,x) > - < nywi, (Oj,y + WO,y&j,y) >

- < n_y_,i, (_j,u -_ _j,_ + woa,¢j,x + W0,xCj,y) >

Finally, comparison of the _tbove equation with equation, (AT) shows that the subscripts i and j can
be interchanged with the r,.sult that

< ¢j, Na(nxwi, nyw ,nywi, nxyu, i, wo) > - < ¢i, N3(nzwj, nywj, nxywj, wo) > = 0 (A12d)

Equations (A12), based ol the solutions of equations (20), are sufficient to derive the orthogonality
relation (eq. (21)).

Expansion of w in Terms of Eigenfunctions ¢i

In equation (27), the current approximation w0 for w it_ expressed as a series of eigenfunctions. The

coefficients ai in the series are computed from the orthogonality relation (eq. (21)) and the normalizing
equation (eq. (26)) as follows:

( )< ¢_, N3(N_L, YyL, ;__yL, _o) > = < ¢_, ga NxL, _¥yL,N.yL, _ ajCj
j=l

> = --ai (A13)

The formal expansion of wc as a series of eigenfunctions appears again in the analysis in equations (28)
and is repeated in equatim),_ (39). Using equations (18), the residual error E3 is written as

E 3 = L33(w,,) - N3(Nxwo, Nywo, NxywO, wo) - AN3(NxL , NyL, NxyL, wo) (A14)

Equations (A14) and (A131 are used to derive equation (28); also, the term

E3i = < (Pi, L33(w0) > - < ¢i, N3(N:_w0, NywO, NxywO, wo) >

is independent of the load t_tctor A.

Coefficients of Higher Order Terms in Generalized Coordinates

The coefficients of quadratic and cubic terms in the generalized coordinates that appear in
equations (38) are defined _,.s follows:
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< ¢i, N3(N_I, Nuw],N_uwl,,_w)> + < Oi,N3(N_w2,Nuw2,N_u_2,wo)>

O_ oc

= Z Z qjqk< _, N3(n_wj,n_,n._, _k) >
j=lk=l

oc oo

+ _ _ qjqk < ¢_,g3(_jk, _jk, _jk, Ck)>
j=lk=l

o_ [x>

j=l k=l

(A15)

< ¢i, ga(g_., N_,2, N_u_2,_) >

oo Oo cx:)

= Z Z Z qjqkqm < ¢i, Na(nxwjk,nywjk,nzywjk,¢m) >
j=l k=l m=l

= Z Z Z qJqkqmC3ij km

j=l k=l m=l

When equations (A15) and (A16) are substituted into equations (38), the summation

suppressed to condense the notation.

(A16)

signs are
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Figure 1. Schematic of C1 and C2 boundary arcs of a plate.
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